How can I use python pool map with multiple arguments in the multiprocessing library?
In Python’s multiprocessing library, is there a variant of pool.map that supports multiple arguments? Here’s an example where I am trying to use it:
import multiprocessing
text = “test”
def harvester(text, case):
X = case[0]
text + str(X)
if name == ‘main’:
pool = multiprocessing.Pool(processes=6)
case = RAW_DATASET
pool.map(harvester(text, case), case, 1)
pool.close()
pool.join()
How can I correctly implement python pool map to handle multiple arguments?
Hey All!
Using functools.partial
"
Have you ever faced the challenge of passing multiple arguments to a multiprocessing function? The functools.partial
method is a lifesaver here. It allows you to “freeze” some arguments, making it easier to handle the rest via pool.map
.
import multiprocessing
from functools import partial
text = "test"
def harvester(text, case):
X = case[0]
return text + str(X)
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=6)
case = RAW_DATASET
# Use partial to fix the `text` argument and pass `case` to map
pool.map(partial(harvester, text), case)
pool.close()
pool.join()
Here, partial(harvester, text)
binds the text
argument, letting pool.map
handle the dynamic case
. Elegant and straightforward, right?
Using zip
to Pair Arguments"
Adding to @emma-crepeau solution, here’s another approach when dealing with separate lists of arguments. You can use zip
to pair arguments into tuples and pass them to pool.map
.
import multiprocessing
text = "test"
def harvester(text, case):
X = case[0]
return text + str(X)
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=6)
case = RAW_DATASET
# Pair arguments using zip
pool.map(harvester, zip([text] * len(case), case))
pool.close()
pool.join()
Using zip([text] * len(case), case)
ensures that each tuple contains the necessary arguments for harvester
. It’s a handy trick for cleaner argument handling.
“Using starmap
”
@vindhya.rddy idea is great, but what if we want an even more specialized method? Enter pool.starmap
, a method designed specifically for unpacking tuples into multiple arguments.
import multiprocessing
text = "test"
def harvester(text, case):
X = case[0]
return text + str(X)
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=6)
case = RAW_DATASET
# Use starmap to unpack multiple arguments
pool.starmap(harvester, [(text, item) for item in case])
pool.close()
pool.join()
starmap
takes care of unpacking tuples and passing them as arguments to the function, simplifying the process even further.